The generator matrix

 1  0  0  0  0  1  1  1  0  X  1  1  X  0  1  1  1  X  1  X  0  0  1  X  1  1  X  0  X  0  1  1  X  1  1  1  X  1  1  X  X  1  1  X  0  0  1  1  0  X  0  1  X  0  1  X  1  1  1  1  0  X  0  0  X
 0  1  0  0  0  X  X  X  X  1  1  1  1  1 X+1  1  0  1 X+1  0  0  1 X+1  1 X+1  1  0  0  1  1 X+1  1  X  X X+1  0  1  1 X+1  X  1  0  1  1  1  1  X X+1  1  0  1  0  X  1  1  0  X  0  1 X+1  0  0  X  X  1
 0  0  1  0  0  0  0  X  0  0  X  X  0  X  X  0  1  1  1  1  1 X+1 X+1  1  1 X+1  1  X X+1 X+1  0 X+1  X  0  0 X+1  X  1  X  1  0  X  0 X+1 X+1  0 X+1  X X+1  0  X X+1  1  1 X+1  X X+1  1  0  X  1  0  1  1  1
 0  0  0  1  0  0 X+1 X+1  1  X  0  1  1 X+1  X  1  X  1 X+1 X+1  X  0  X  0  1  X  1  1  1  1  1 X+1  1  X  0  0  1  0  0 X+1  X X+1 X+1  X  X X+1  X  1 X+1  0  X  0  X  X  1  X  X  1 X+1  X  X  1  0 X+1  1
 0  0  0  0  1  1 X+1  X X+1 X+1  1  0  X  1  0 X+1 X+1  1 X+1  X  1  X  X X+1  0  1 X+1  0  0 X+1 X+1  X X+1  1  X  1  X  0  1 X+1  0  1  0 X+1  0  X X+1 X+1 X+1  1 X+1 X+1 X+1  1  1  1  X  X  X  X  X  1 X+1  1  1

generates a code of length 65 over Z2[X]/(X^2) who�s minimum homogenous weight is 58.

Homogenous weight enumerator: w(x)=1x^0+82x^58+190x^60+164x^62+168x^64+126x^66+69x^68+70x^70+45x^72+38x^74+29x^76+26x^78+10x^80+6x^82

The gray image is a linear code over GF(2) with n=130, k=10 and d=58.
This code was found by Heurico 1.16 in 0.168 seconds.